SHARP TECHNICAL MANUAL

LCD COLOUR TELEVISION MODEL 6M-10G/S

CONTENTS
Page

1. Tuning Voltage Generating \&Audio Mute Circuits 2
2. PIF/SIF Circuit 7
3, Chroma Processing Circuit 9
3. Microcomputerized Channel Selector Circuit 12
4. LCD Interface Circuit 15
5. Fluorescent Lamp Drive Circuit 18
6. Block Diagram 19

1. TUNING VOLTAGE GENERATING \& AUDIO MUTE CIRCUITS

RH-iX1605CEZZ (TSC: Tuning System Control)

Outline

The i 1605 CE is a multi-function integrated circuit designed for the tuning system of a voltage synthesizer type small colour TV set.
The functions of this IC include tuning voltage generation, AFT defeat and UN switching, low voltage detection, U/V sign positioning, tuner band selection, reception judgment, audio muting, and resetting.

Features

1. Tuning voltage generating circuit AFT defeat and U/V switching circuit U/V sign positioning circuit
2. Tuner band selection circuit
3. Low voltage detection circuit
4. Reception judgment and audio mute circuit
5. Reset circuit

Basic connections

Circuit operation

(1) Pin functions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Name of terminal	Function	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Name of terminal	Function
1	B01	VHF band select output	23	AF-IN	AFT voltage input
2	B02	UHF band select output	24	DEFEAT	Defeat signal input (positive
3	B03	VHF-L/H select output			polarity)
4	VT-	Tuning voltage output	25	MUTE	Audio mute output
	OUT		26	SYNC-	Reception judgment output
5	VCC3	33 V regulated power input		OUT	
6	GND	Grounding terminal	27	VCC1	+ 5 V power input
7	VT-	Tuning voltage operational	28	GND	Grounding terminal
		amplifier negative input	29	SYNC +	Reception judgment
8	VT+	Tuning voltage operational			threshold preset
		amplifier positive input	30	SYNC-	Reception judgment
9	V-i	V-i conversion input	31	LPF	Capacitor connection for
10	GAIN	VHF tuning voltage gain			reception judgment low-
	ADJ.	adjusting resistor connection			pass filter
11	GAIN	VHF tuning voltage gain	32	SYNC	Sync signal input (positive
	ADJ.	adjusting resistor connection			polarity)
12	TH1	AF1 output preset voltage	33	$\overline{H . P}$	Horizontal pulse signal input
13	TH2	AF2 output preset voltage			(negative polarity)
14	UHF	UHF sign output voltage	34	RESET	Reset output
	ADJ.	control		OUT	
15	VHF	VHF sign output voltage	35	VCC4	Reset power input (+5 V)
	ADJ.	control	36	LVF OUT	Low-vol tage flag output
16	SIGN	Sign output	37	LVF IN	External voltage flag input
	OUT		38	$\mathrm{Ni}-\mathrm{Cd}$	Ni-Cd identify control voltage
17	PWM OUT	PWM amplifier output		CTR	input
18	PWM IN	PWM input	39	NiCd-	Battery voltage input
19	AF1	AFT control voltage output	40	$\mathrm{NiCd}+$	Low-voltage judgment preset
20	AF2	AFT control voltage output			voltage
21	AF3	UHF AFT control voltage	41	VCC2	+ 13 V power input
		output	42	BVCC	BO3 power input (+13 V)
22	AF OUT	AFT voltage output	43	B3	L/H band select input
			44	B1	U/V band select input

Circuit behavior

(1) Tuning voltage generating circuit

PWM signal being inputted to pin (18) is amplified to 33 V . The resulting signal is converted to a DC voltage by the low-pass filter that is composed of R510, R511 and C504. The DC voltage signal goes out of pin (9) through R502 into pin (7). The sign output voltage at pin (16) and the AFT output voltage at pin (22), on the other hand, are applied to R509 and R517, where these signals turn to be a composite signal. This signal is fed to pin (8) in order to control the tuning voltage. The AFT input voltage is fed through R518 and goes out of pin (22). Together with this AFT output voltage, pin (22) receives another output; that is a $1 / 2 \mathrm{VCC} 1$ voltage which is given out of pins (19), (20) and (21), and divided by R513, R514 and R515 respectively. Pin (21) stays in high impedance state at the selection of VHF, but gives out the $1 / 2 \mathrm{VCC} 1$ output at the selection of UHF. The AFT output voltage is then reduced, according to the ratio of R518 to R515, for switching between UHF and VHF. Pins (19) and (20) remain in high impedance state while the voltage at pin (9) is higher than the TH2 voltage at pin (13). With the voltage level somewhere between TH1 and TH2, pin (20) receives the $1 / 2 \mathrm{VCC}$ voltage and pin (19) is kept in high impedance state. When the voltage at pin (9) goes above the TH1 level, the $1 / 2 \mathrm{VCC} 1$ voltage is given into pins (19) and (20).

Table I

Input		output			
B1	V-I (V9)	AF1	AF2	AF3	VT OUT
L	$*$	-	-	ZH	-
H	$*$	-	-	$1 / 2 \mathrm{VCC1}$	-
$*$	V9 $>$ TH1	$1 / 2 \mathrm{VCC1}$	$1 / 2 \mathrm{VCC1}$	-	LOW
$*$	TH1 $>$ V9 $>$ TH2	ZH	$1 / 2 \mathrm{VCC1}$	-	MIDDLE
$*$	TH2>V9	ZH	ZH	-	HIGH

TH1 $=$ Voltage at pin (I 2) $\quad \mathrm{TH} 2=$ Voltage at pin (13) $\quad \mathrm{ZH}=$ High impedance = Don't care
(2) Tuner band select circuit

Tuner bands are selected by the input coming from the microcomputer IC401.
Table 2

Input		output				
B1	B3	BO1	BO2	BO3		
L	L	VCC1	L	L		
L	H	VCC1	L	BVCC		
H	$*$	L	VCC1	ZH	\quad	= Don't care $\mathrm{ZH}=$ High impedance \quad BVCC $=$ Voltage at pin (42)
:---						

(3) Low-voltage detection circuit

An output is fed to the microcomputer IC401 when the battery voltage has dropped. By this, the batterv indicator is activated.

Table 3

Input			output
LVF-IN	Ni-Cd control	NiCd-	LVF OUT
L	L	NiCd $+<$ NiCd-	L (Note 1)
L	L	NiCd $+<$ NiCd-	H (Note 1)
L	H or open	${ }^{*}$	L
H or open	L	${ }^{*}$	H
H or open	H or open	${ }^{*}$	H

* $=$ Don't care

Note 1: Hysteresis voltage $\triangle \mathrm{V}$

$$
\Delta V=\frac{R 522 \times R 521}{R 522+R 521} \times 25 \times 10-6[V]
$$

Figure. 1 Input/output characteristics

(4) Reception judgment and audio mute circuit

The $\overline{H P}$ and the SYNC signals are compared with each other to mute the audio circuit if noises are received.

Figure. 2 Circuit behavior
(5) Reset circuit

Figure. 3 Reset circuit input/output characteristics

2. PIF/SIF CIRCUIT (TA8805F)

The PIF/SIF circuit is an IC for LCD television system. A double time constant circuit is composed of C215, R214 and C214 in order to improve the response time in automatic gain control.

Features

* Video IF amplification detector (LLP detector)
* Noise inverter
* IF AGC detector (with double time constant)
* RF AGC amplifier (forward AGC)
* AFT detector with MUTE function
* Audio IF amplification detector
* Electronic sound volume control
* Audio preamplifier (earphone direct-driven)

Basic connections

Pin functions

Pin No.	Name of terminal	Function
1	AGC1	Primary AGC filter terminal
2	AGC2	'Secondary AGC filter terminal
3	RF-AGC OUT	RF AGC control voltage output
4	RF-AGC DELAY	RE AGC delay adjustment terminal
5	PIF-VCC	PIF circuit power supply terminal
6	IF-IN1	IF signal input terminal
7	IF-IN2	IF signal input terminal
8	PIF-GND	PIF circuit grounding terminal
9	SIF IN	SIF signal input terminal
10	SIF VCC	SIF circuit power supply terminal
11	VOLUME CONT	Volume control terminal
12	AUDIO OUT	Audio output terminal
13	SIF GND	SIF circuit grounding terminal
14	AUDIO IN	Audio input terminal
15	FM DET IN	Audio FM detector input terminal
16	LIMIT OUT	SIF limiter output terminal
17	DE-EMP	Audio deemphasis terminal
18	SYNC. SEP	Sync separation signal output terminal
19	LLD COIL1	PIF detector carrier sampling terminal
20	LLD COIL2	AFT COIL
21	SYNC. SEP IN	Sync separation signal input terminal
23	VIDEO OUT	Video detection output terminal carrier sampling terminal
24	AFT OUT	

CHROMA PROCESSING CIRCUIT (TA8795AF)

The TA8795AF integrated circuit is intended for processing the multi-input (in NTSC, SECAM and PAL systems) video and chroma signals and for sync separation.
The video signal is fed to pin (2), whereas the chroma signal is sent to pin (21) (for NTSC or PAL system) or pin (24) (for SECAM system). The video signal for sync separation goes into pin (13).
The video signal via pin (13) is first amplitude-separated in the sync separator and goes to the vertical integrating circuit to pick up the external vertical sync signal. The horizontal sync signal, on the other hand, goes through the AFC detection, 32 fH oscillation and horizontal count-down circuits - - making a loop - - in order to get a horizontal pulse signal in sync with the external sync signal.
When the external vertical sync signal has a constant pulse width and period and flows continuously, this signal resets the vertical count-down circuit, thereby producing the vertical sync signal. If the external vertical sync signal does not meet the above conditions, the internal vertical sync signal is outputted to provide stable vertical sync even without any external sync signal.
The video signal via pin (2) is pedestal-clamped and fed through the following circuits for demodulation.

- Black stretching circuit

This circuit is used to stretch below-the-level signals toward the black portion. Clear images can be achieved.

- DC transmission factor compensating circuit

This circuit prevents white compression on a light screen and black compression on a dark screen.

- Sharpness enhancing circuit
- Dynamic gamma circuit

This circuit too prevents white compression on a light screen.
The chroma signal is identified by the identification circuit and goes out of pins (31), (38) and (15). These pins double as manual mode input terminals. (See the table below.)
In the PAL and SECAM systems, the chroma signal goes out of pin (28) and into the 1 H delay line. The 1 H delay line output is fed to pin (30) for chroma signal processing. The resulting signal proceeds to the demodulation circuit.

Outputs in automatic mode

Signal received	Pin (31)	Pin (38)	Pin (15)
PAL	H	H	M
SECAM	H	M	M
4.43 NTSC	L	H	M
3.58 NTSC	L	L	M
Black-\&-white	L	M / L	L

H:3V
$\mathrm{M}: 1.5 \mathrm{~V}$
$\mathrm{L}: \mathrm{OV}$

Inputs in manual mode

System	Pin (31)	Pin (38)	Pin (15)
PAL	H	H	H
SECAM	H	(M)	H
4.43 NTSC	(L)	H	H
3.58 NTSC	(L)	(L)	H

Levels in parentheses denote drive with high impedance.

Pin No.	Name of terminal	Function
1	NRSW	YNRswitch
2	YIN	Video signal input
3	Black PEAK	Time constant connection for black peak level
4	50/60Hz	Vertical sync identify output
5	VD OUT	Vertical output
6	HD OUT	Horizontal output
7	CP/SP	Clamp pulse/sync separation output
8	HD2	Horizontal sync output
9	Def GND	Ground for sync signal regenerative circuit
10	V INT	Vertical sync integrating capacitor
11	32Fh VCO	32f H resonator
12	AFC FILTER	Filter for automatic horizontal frequency control
13	SYNC IN	Video signal input for sync regeneration
14	Def Vcc	Sync signal regenerative circuit power
15	SW3	System logic input/output
16	3.58X	3.58 MHz crystal oscillator connection
17	N-IDENT	NTSC identify filter connection
18	4.43x	4.43 MHz crystal oscillator connection
19	TINT	Tint control connection
20	P-IDENT	PAL identify filter connection
21	P/N IN	PAL/NTSC chroma input
22	F-ID SW	SECAM identify switch
23	Chroma GND	Ground for chroma processing circuit
24	S IN	SECAM chroma input
25	ACC FILTER	ACC detection filter connection
26	SID Det	SECAM identify resonance coil connection
27	APC FILTER	APC filter connection
28	1H OUT	PAL/SECAM colour signal output of 1 H delay line
29	SID	SECAM identify filter connection
30	1 H IN	1 H delay line signal input of PAL/SECAM colour signal
31	SW1	System logic input/output
32	B-Y Del	SECAM detection tank coil connection
33	B-Y De2	SECAM detection tank coil connection
34	COLOUR	Colour control
35	c vcc	Chroma processing circuit power
36	R-Y Del	SECAM detection tank coil connection
37	R-Y De2	SECAM detection tank coil connection
38	SW2	System logic input/output
39	B-Y Dem	SECAM deemphasis filter connection
40		
41	R-Y Dem	SECAM deemphasis filter connection
42		
43 44	BOUT G OUT	Primary-colour (B) signal output Primary-colour (G) signal output

Pin No.	Name of terminal	Function
45	ROUT	Primary-colour (R) signal output
46	CLAMP FILTER	Clamp filter connection
47	PIP SW	Output signal mode selector
48	Vref	Reference voltage capacitor connection
49	γ CONT2	Gamma correction control
50	Y CLAMP	Clamp capacitor connection
51	γ CONT1	Gamma correction control
52	BRIGHT	Brightness control
53	Y-GND	Ground for video signal processing circuit
54	White PEAK	Time constant connection for white peak
55	CONTRAST	Contrast control
56	Y-VCC	Video signal processing circuit power
57	PICTURE	Picture quality control
58	YHIN	Secondary differential signal input
59	APL IN	Black stretching
60	APL OUT	Black stretching

BLOCK DIAGRAM

4. MICROCOMPUTERIZED CHANNEL SELECTOR CIRCUIT (M34300N4-740FP)

Discussed below are the functions and basic operation of this IC.

Pin No.	Name of terminal	1/0	Function/Terminal waveform			
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { P70 } \\ & \text { P71 } \\ & \text { P72 } \\ & \text { P00 } \\ & \text { P01 } \end{aligned}$	0	Key strobe output.			
19	TEST	1	Connected to GND.			
20	D/A	0	PWM output for tuning voltage.			
21	GND		Grounding terminal.			
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { P30 } \\ & \text { P31 } \\ & \text { P32 } \\ & \text { P33 } \end{aligned}$	$\begin{aligned} & \text { \| } \\ & \text { \| } \\ & \text { \| } \\ & \text { \| } \end{aligned}$				
28	P02	0	Colour mode control output.			
31	P11	0		P02	P11	
			PAL	L	L	
			SECAM	L	H	
			N4.43	H	L	
			N3.58	H	H	
29	P03	0	DEF output to turn off AFT.			
30	P10	0	Generation of tuner's control (band) signal.			
32	P12	0		V_{L}	V_{H}	U
			P10	L	L	H
			P12	H	L	L
33	P61	0	AUTO LED light-up output. Light-up at "L".			
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	Xin Xout		System clock oscillation terminal (4 MHz).			
36	P20	0	Colour mode control output. Auto at "H", Forced at "L".			

Pin No.	Name of terminal	I/O	Function/Terminal waveform
37	P21	0	Fluorescent lamp control output terminal.
38	VSYNC	1	Vertical sync signal input, negative logic.
39	HSYNC	1	Horizontal sync signal input, negative logic.
$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Sign display clock input/output. Typical 5.0 MHz . Oscillating only when sign is displayed.
42	VDD		Supply voltage (5.0 V) input

Key matrix *: Switch No marking: Pushbutton

5. LCD INTERFACE CIRCUIT (TR3P89)

The interface IC is dedicated to TFT colour LCD panels.

Features

This IC has the following circuits built-in.

- Gamma correction circuit
- Polarity inversion circuit for TFT LCD panels
- Common inversion circuit
- RGB 2 -input switching circuit
- White balance adjustment circuit
- Sync separation circuit

Circuit behaviour

The R, G and B signals, which have been converted from the video signal by IC801 and TA8795F, are fed to pins (I), (2) and (3) respectively. These signals go through the pedestal clamp circuit first and then the white balance circuit.
White balance adjustment is made with VR810 (red sub-brightness control), VR812 (red sub-contrast control), VR806 (blue sub-contrast control) and VR807 (blue sub-brightness control).
After the white balance adjustment circuit, the signals are sent to the gamma correction circuit. In this circuit, the drive curve of the video signal is corrected according to the LCD panel's characteristics. How much to correct is determined by the voltages at pins (17) and (28).
The gamma-corrected signals proceed to the inverter stage, where the positive and negative polarities are switched over in sync with the frame pulses being applied at pin (29) from the LCD panel. The resulting signals go out of pins (22), (24) and (26) into the transistors Q861, Q862 and Q863. After being buffered in these transistors, the signals are outputted to the LCD panels.
The on-screen display signal for channel signs, for example, are sent from pins (2), (3) and (4) of the microcomputer IC401 to pins (6), (7) and (8) of IC802. These signals and the video signal are switched each other by the voltage being applied at pin (36).

Pin Description

Pin No.	Name	Pin No.	Name
1	RI IN	19	COMMON INV
2	Cl IN	20	COMMON OUT
3	B1 IN	21	COMMON SWING
4	GND	22	B OUT
5	VEE 1	23	VEE 2
6	R2 IN	24	G OUT
7	G2 IN	25	OUT DC V DETECT
8	B2 IN	26	ROUT
9	SYNC SEP IN	27	GAMMA 1
10	SYNC OUT	28	GAMMA 2
11	TIME CONSTANT	29	INV
12	SYNC IN	30	VCC 2
13	CLAMP(G)	31	R SUB BRIGHT
14	CLAMP(B)	32	CONTRAST
15	B SUB CONTRAST	33	CLAMP (R)
16	VCC1	34	R SUB CONTRAST
17	B SUB BRIGHT	35	BRIGHT
18	COMMON DC VOLT	36	SW

6. FLUORESCENT LAMP DRIVE CIRCUIT (DC-AC INVERTER CIRCUIT)

Since the fluorescent lamp operates on AC power, a DC-AC inverter circuit is needed to convert DC to AC when the supply power voltage is DC. A high voltage is also required to drive the fluorescent lamp. On this model, a voltage greater than $1500 \mathrm{Vp}-\mathrm{p}$ is applied across the fluorescent lamp. See the fluorescent lamp drive circuit in Fig. 6-2. The supply voltage is applied at pin (3) of the inverter transformer. The voltage at the base of Q759 remains the same; Q759 is therefore stays off, and Q760 as well as Q761 remain off too. When the power is turned on, Q759 is activated and either of Q760 or Q761 turns on earlier than the other. As a result, the circuit begins to oscillate at the resonant oscillation frequency which is determined by the capacitance (C) of C758 and the inductance (L) of the transformer's primary winding. Pins (1) and (5) of the transformer's tertiary winding are connected with the bases of Q760 and Q761 for forward feedback. Fig. 6-1 shows the relevant voltage waveforms. A vertically symmetrical sine wave is generated between pins (2) and (4) of T702. The secondary voltage between pins (6) and (9), which is proportional to the transformer's winding ratio, is given out to drive the fluorescent lamp. Once discharging has started, the fluorescent lamp's internal resistance goes down (negative resistance). By dividing the capacitance (C) of C761, a constant discharge current flows to keep the fluorescent lamp on. During arc discharge, the fluorescent lamp gives out ultraviolet rays. By means of the fluorescent substance applied over the inner surface of the glass light emitting tube, the ultraviolet rays are turned visible. This visible light is used as the backlight of the LCD panel.

- Votage waveforms

Beeween pin (2) of 702 and ground $\sim \sim \Omega \Omega \Omega$
Beeween in (4) of 7702 and ground $\sim \sim \cap$
Between pin (2) and (4) of T702

Figure. 6-1

Figure. 6-2

7. BLOCK DIAGRAM

	7	8	9	10	11	12

S H A R P

